Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.949
Filtrar
1.
Water Sci Technol ; 89(7): 1846-1859, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619907

RESUMO

Geosynthetic clay liners (GCLs) are mostly used as flow barriers in landfills and waste containments due to their low hydraulic conductivity to prevent the leachate from reaching the environment. The self-healing and swell-shrink properties of soft clays (expansive soils) such as bentonite enable them as promising materials for the GCL core layers. However, it is important to modify their physico-chemical properties in order to overcome the functional limitations of GCL under different hydraulic conditions. In the present study, locally available black cotton soil (BCS) is introduced in the presence of an anionic polymer named carboxymethyl cellulose (CMC) as an alternative to bentonite to enhance the hydraulic properties of GCL under different compositions. The modified GCL is prepared by stitching the liner with an optimum percentage of CMC along with various percentages of BCS mixed with bentonite. Hydraulic conductivity tests were performed on the modified GCL using the flexi-wall permeameter. The results suggest that the lowest hydraulic conductivity of 4.58 × 10-10 m/s is obtained when 25% of BCS is blended with bentonite and an optimum 8% CMC and further addition of BCS results in the reduction of the hydraulic conductivity.


Assuntos
Bentonita , Eliminação de Resíduos , Bentonita/química , Argila , Solo , Metilcelulose , Eliminação de Resíduos/métodos , Carboximetilcelulose Sódica
2.
J Environ Radioact ; 275: 107430, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615506

RESUMO

Clay colloids in the subsurface environment have a strong adsorption capacity for radionuclides, and the mobile colloids will carry the nuclides for migration, which would promote the movability of radionuclides in the groundwater environment and pose a threat to the ecosphere. The investigations of the adsorption/desorption behaviors of radionuclides in colloids and porous media are significant for the evaluation of the geological disposal of radioactive wastes. To illustrate the adsorption/desorption behaviors of 241Am(Ⅲ) in Na-montmorillonite colloid and/or quartz sand systems at different pH (5, 7 and 9), ionic strengths (0, 0.1 and 5 mM), colloid concentrations (300 and 900 mg/L), nuclide concentrations (500, 800, 1100 and 1400 Bq/mL) and grain sizes (40 and 60 mesh), a series of batch sorption-desorption experiments were conducted. Combining the analysis of the physical and chemical properties of Na-montmorillonite with the Freundlich model, the influencing mechanism of different controlling factors is discussed. The experimental results show that the adsorption/desorption behaviors of 241Am(Ⅲ) in Na-montmorillonite colloid and/or quartz sand strongly are influenced by the pH value and ionic strength of a solution, the colloid concentration as well as quartz sand grain size. The adsorption and desorption isotherms within all the experimental conditions could be well-fitted by the Freundlich model and the correlation coefficients (R2) are bigger than 0.9. With the increase in pH, the adsorption partition coefficient (Kd) at 241Am(Ⅲ)-Na-montmorillonite colloid two-phase system and 241Am(Ⅲ)-Na-montmorillonite colloid-quartz sand three-phase system presents a trend which increases firstly followed by decreasing, due to the changes in the morphology of Am with pH. The Kd of 241Am(Ⅲ) adsorption on montmorillonite colloid and quartz sand decreases with increasing in ionic strength, which is mainly attributed to the competitive adsorption, surface complexation and the reduction of surface zeta potential. Additionally, the Kd increases with increasing colloid concentrations because of the increase in adsorption sites. When the mean grain diameter changes from 0.45 to 0.3 mm, the adsorption variation trends of 241Am(Ⅲ) remain basically unchanged. The research results obtained in this work are meaningful and helpful in understanding the migration behaviors of radionuclides in the underground environment.


Assuntos
Amerício , Bentonita , Coloides , Quartzo , Bentonita/química , Concentração Osmolar , Adsorção , Concentração de Íons de Hidrogênio , Coloides/química , Quartzo/química , Amerício/química , Amerício/análise , Poluentes Radioativos da Água/química , Poluentes Radioativos da Água/análise , Poluentes Radioativos do Solo/análise , Poluentes Radioativos do Solo/química , Modelos Químicos , Tamanho da Partícula , Areia/química
3.
Food Res Int ; 185: 114292, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38658072

RESUMO

The synthetic, non-renewable nature and harmful effects of plastic packaging have led to the synthesis of eco-friendly renewable bio-nanocomposite film. The present work was aimed at the formulation and characterization of bio-nanocomposite film using soybean meal protein, montmorillonite (MMT), and debittered kinnow peel powder. The composition of film includes protein isolate (5% w/v), glycerol (50% w/w), peel powder (20% w/w), and MMT (0.5-2.5% w/w). Incorporation of MMT in soybean meal protein-based film loaded with kinnow peel powder showed lesser solubility (16.76-26.32%), and swelling ability (142.77-184.21%) than the film prepared without MMT (29.41%, & 229.41%, respectively). The mechanical properties like tensile strength of nanocomposite film improved from 9.41 to 38.69% with the increasing concentration of MMT. The water vapor transmission rate of the nanocomposite film was decreased by 3.45-17.85% when the MMT concentration increased. Fourier-transform infrared spectroscopy and X-ray diffraction analysis showed no considerable change in the structural properties of the film after the addition of MMT. Differential scanning colorimeter analysis revealed the increment in melting temperature (85.33-92.67 °C) of the film with a higher concentration of MMT. Scanning electron microscopy analysis indicated an increased distributed area of MMT throughout the film at higher concentrations. The antimicrobial activity of the film was remarkably increased by 4.96-17.18% with the addition of MMT. The results obtained in the current work confirmed that MMT incorporation in soybean meal protein-based film can augment its properties and can be utilized for enhancing the storage period of food products.


Assuntos
Bentonita , Embalagem de Alimentos , Nanocompostos , Pós , Proteínas de Soja , Resistência à Tração , Bentonita/química , Nanocompostos/química , Proteínas de Soja/química , Embalagem de Alimentos/métodos , Soja/química , Solubilidade , Vapor
4.
Environ Sci Pollut Res Int ; 31(17): 25964-25977, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492144

RESUMO

Solidification/stabilization technology is commonly used in the rehabilitation of dredged sediment due to its cost-effectiveness. However, traditional solidification/stabilization technology relies on cement, which increases the risk of soil alkalization and leads to increased CO2 emissions during cement production. To address this issue, this study proposed an innovative approach by incorporating bentonite and citrus peel powder as additives in the solidifying agent, with the aim of reducing cement usage in the dredged sediment solidification process. The research results showed that there is a significant interaction among cement, bentonite, and citrus peel powder. After response surface methodology (RSM) optimization, the optimal ratio of the cementitious mixture was determined to be 14.86 g/kg for cement, 5.85 g/kg for bentonite, and 9.31 g/kg for citrus peel powder. The unconfined compressive strength (UCS) of the solidified sediments reached 3144.84 kPa. The reaction products of the solidification materials, when mixed with sediment, facilitated adsorption, gelation, and network structure connection. Simultaneously, the leaching concentration of heavy metals was significantly decreased with five heavy metals (Zn, As, Cd, Hg, and Pb) leaching concentrations decreasing by more than 50%, which met the prescribed thresholds for green planting. This study demonstrated the ecological benefits of employing bentonite and citrus peel powder in the solidification process of dredged sediment, providing an effective solution for sediment solidification.


Assuntos
Mercúrio , Metais Pesados , Bentonita/química , Pós , Metais Pesados/química , Adsorção
5.
J Hazard Mater ; 469: 133927, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38447373

RESUMO

Heavy metals (HMs) are common contaminants with major concern of severe environmental and health problems. This study evaluated the effects of organo-mineral amendments (mesquite biochar (MB), zeolite (ZL) and bentonite (BN) alone and in combination) applied at different rates to promote the maize (Zea mays L.) growth by providing essential nutrient and improving the soil physio-chemical properties under zinc (Zn) and lead (Pb) contamination. Result revealed that the incorporation of organo-mineral amendments had significantly alleviated Pb and Zn contamination by maize plants and improved the physiological and biochemical attributes of plants. Combined application of organo-mineral amendments including BMA-1, BMA-2 and BMA-3 performed excellently in terms of reducing Pb and Zn concentrations in both leaves (19-60%, 43-75%, respectively) and roots (24-59%, 42-68%, respectively) of maize. The amendments decreased the extractable, reducible, oxidisable and residual fractions of metals in soil and significantly reduced the soil DTPA-extractable Pb and Zn. BMA-1 substantially improved antioxidant enzyme activities in metal-stressed plants. This study indicated that combined use of organo-mineral amendments can effectively reduce the bioavailability and mobility of Pb and Zn in co-contaminated soils. Combined application of organo-mineral amendments could be viable remediation technology for immobilization and metal uptake by plants in polluted soils.


Assuntos
Metais Pesados , Poluentes do Solo , Zeolitas , Zea mays/química , Bentonita/química , Zeolitas/química , Chumbo , Poluentes do Solo/análise , Metais Pesados/análise , Zinco/análise , Carvão Vegetal/química , Solo/química
6.
Colloids Surf B Biointerfaces ; 235: 113768, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325142

RESUMO

Cancer is still one of the deadliest diseases, and diagnosing and treating it effectively remains difficult. As a result, advancements in earlier detection and better therapies are urgently needed. Conventional chemotherapy induces chemoresistance, has non-specific toxicity, and has a meager efficacy. Natural materials like nanosized clay mineral formations of various shapes (platy, tubular, spherical, and fibrous) with tunable physicochemical, morphological, and structural features serve as potential templates for these. As multifunctional biocompatible nanocarriers with numerous applications in cancer research, diagnosis, and therapy, their submicron size, individual morphology, high specific surface area, enhanced adsorption ability, cation exchange capacity, and multilayered organization of 0.7-1 nm thick single sheets have attracted significant interest. Kaolinite, halloysite, montmorillonite, laponite, bentonite, sepiolite, palygorskite, and allophane are the most typical nanoclay minerals explored for cancer. These multilayered minerals can function as nanocarriers to effectively carry a variety of anticancer medications to the tumor site and improve their stability, dispersibility, sustained release, and transport. Proteins and DNA/RNA can be transported using nanoclays with positive and negative surfaces. The platform for phototherapeutic agents can be nanoclays. Clays with bio-functionality have been developed using various surface engineering techniques, which could help treat cancer. The promise of nanoclays as distinctive crystalline materials with applications in cancer research, diagnostics, and therapy are examined in this review.


Assuntos
Bentonita , Neoplasias , Humanos , Bentonita/química , Caulim , Argila , Minerais , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico
7.
Chem Biodivers ; 21(4): e202301899, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38345198

RESUMO

This study presents the fabrication of a novel porous composite of graphene oxide-montmorillonite (GO-MMT) through the modification of montmorillonite using the freeze-drying method for the purpose of Pb removal. The characterization of the GO-MMT composite was conducted using scanning electron microscopy, Fourier transform infrared spectrometry, and X-ray diffraction. The results from batch adsorption experiments revealed that the GO-MMT composite exhibited a superior capacity for Pb removal compared to MMT. Furthermore, a single factor experiment confirmed that the dosage of the GO-MMT composite or GO, pH, temperature, and reaction time all significantly influenced the adsorption of Pb by the GO-MMT composite, MMT, or GO. This superiority can be attributed to the presence of oxygen-containing functional groups, the site-blocking effect, and the ion exchange mechanism exhibited by the GO-MMT composite.


Assuntos
Grafite , Poluentes Químicos da Água , Bentonita/química , Chumbo , Adsorção , Grafite/química , Poluentes Químicos da Água/química
8.
J Mol Graph Model ; 129: 108730, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38377793

RESUMO

Inorganic binders like bentonite, used for pelletization of low-grade iron ore, generate iron ore slimes with comparatively high silica and alumina content necessitating extra steps for their removal during iron making process. This demands the usage of organic binders as full or partial replacement of bentonite for iron ore pelletization. In this work, adsorption of organic binders with saccharides skeleton and -H, -OH, -CH2OH and -CH2CH2OH as polar substituents, on goethite surface was studied using density functional theory, molecular dynamics and machine learning. It was observed that adsorption energy of binders on goethite surface had weak dependence on number of hydrogen bonds between them. With this favorable interaction in mind, a library containing 64 organic binders was constructed and adsorption energy of 30 of these binders was computed using molecular dynamics, followed by training of a linear regression model, which was then used to predict the adsorption energy of rest of the binders in the library. It was found that the introduction of -CH2CH2OH at R2 position resulted in statistically significant higher adsorption energy. Binder34 and Binder44 were identified as viable candidates for both goethite and hematite ore pelletization and adsorption of their n-mers on goethite and hematite surfaces was also quantified.


Assuntos
Bentonita , Compostos Férricos , Compostos de Ferro , Minerais , Bentonita/química , Compostos de Ferro/química , Ferro/química , Adsorção
9.
Int J Biol Macromol ; 263(Pt 1): 130224, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387636

RESUMO

Treating wastewater polluted with organic dyestuffs is still a challenge. In that vein, facile synthesis of a structurally simple composite of chitosan with montmorillonite (CS-MMT) using glutaraldehyde as a crosslinker and the magnetized analogue (MAG@CS-MMT) was proposed as versatile adsorbents for the cationic dye, basic Fuchsin (FUS). Statistical modeling of the adsorption process was mediated using Box-Behnken (BB) design and by varying the composite dose, pH, [FUS], and contact time. Characterization of both composites showed an enhancement of surface features upon magnetization, substantiating a better FUS removal of the MAG@CS-MMT (%R = 98.43 %) compared to CS-MMT (%R = 68.02 %). The surface area analysis demonstrates that MAG@CS-MMT possesses a higher surface area, measuring 41.54 m2/g, and the surface analysis of the magnetized nanocomposite, conducted using FT-IR and Raman spectroscopies, proved the presence of FeO peaks. In the same context, adsorption of FUS onto MAG@CS-MMT fitted-well to the Langmuir isotherm model and the maximum adsorption capacities (qm) were 53.11 mg/g for CS-MMT and 88.34 mg/g for MAG@CS-MMT. Kinetics investigation shows that experimental data fitted well to the pseudo-second order (PSO) model. Regeneration study reveals that MAG@CS-MMT can be recovered effectively for repeated use with a high adsorption efficiency for FUS.


Assuntos
Quitosana , Corantes de Rosanilina , Poluentes Químicos da Água , Bentonita/química , Águas Residuárias , Quitosana/química , Espectroscopia de Infravermelho com Transformada de Fourier , Adsorção , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
10.
Int J Biol Macromol ; 262(Pt 1): 129903, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325694

RESUMO

In the present study, chitosan-bentonite biocomposites were synthesised by ultrasonication, characterized using spectral techniques and assessed for their effectiveness in removing imazethapyr and imazamox from aqueous solution. The response surface methodology based box behnken design was utilized to generate optimum conditions viz. pH (1 to 9), adsorbent dose (0.01 to 1.0 g), contact time (0.5 to 48 h) and temperature (15 to 55 °C) for adsorption of herbicides on biocomposites. Based on model predictions, 60.4 to 91.5 % of imazethapyr and 31.7 to 46.4 % of imazamox was efficiently removed under optimal conditions. Adsorption data exhibited a strong fit to pseudo-second-order kinetic (R2 > 0.987) and Freundlich isotherm (R2 > 0.979). The adsorption capacity ranged from 3.88 to 112 µg1-ng-1mLn and order of adsorption was: low molecular weight chitosan-bentonite> medium molecular weight chitosan-bentonite> high molecular weight chitosan-bentonite> bentonite. Thermodynamic experiments suggested a spontaneous, exothermic process, reducing the system randomness during adsorption. Desorption experiments revealed successful desorption ranging from 91.5 to 97.0 % using 0.1 M NaOH. The adsorption mechanism was dominated by synergistic electrostatic interactions and hydrogen bonding. These results collectively indicated the potential environmental remediation application of chitosan-bentonite biocomposites to adsorb imazethapyr and imazamox from wastewaters.


Assuntos
Quitosana , Imidazóis , Ácidos Nicotínicos , Poluentes Químicos da Água , Quitosana/química , Bentonita/química , Adsorção , Concentração de Íons de Hidrogênio , Termodinâmica , Cinética , Poluentes Químicos da Água/química
11.
Int J Biol Macromol ; 262(Pt 2): 130209, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38365155

RESUMO

This study presents the development of organo-bentonites (OBs); a cost-effective drug delivery system holding both sensing and imaging capabilities. The OBs were synthesized using quaternary ammonium cations derived from chitosan, Lawsonia inermis, and pyrene/anthracene carboxaldehyde combinations through a three-step process: Mannich reaction, quaternization, and intercalation. Physicochemical characterization confirms the organic modification of bentonite. The OBs: NQPB and NQAB hold substantial ciprofloxacin (Cipro) loading capacities (71.51 % and 78.04 %, respectively) and exhibit pH-dependent release profiles, suggesting their potential use as drug delivery platforms. Cell viability evaluation by MTT and live-dead assays indicates favourable results. Both OBs demonstrate fluorescence within the 450-500 nm range, and they display concentration-dependent fluorescence quenching and enhancement for NQPB and NQAB, respectively, in the presence of tryptophan (Trp), making them suitable for its detection. Confocal analysis further enunciates the live intracellular fluorescence upon OB uptake. In summary, the intrinsically fluorescent mesoporous OBs synthesized from Lawsonia inermis and chitosan exhibit multifunctionality, including Cipro delivery, Trp sensing, and live cell imaging. Among the OBs, NQAB could be considered as a promising theranostic platform owing to its superior cytocompatibility (>80 %), appreciable fluorescence, and controlled release profile.


Assuntos
Quitosana , Lawsonia (Planta) , Bentonita/química , Lawsonia (Planta)/química , Argila , Nanomedicina Teranóstica , Sistemas de Liberação de Medicamentos , Ciprofloxacina/farmacologia
12.
Sci Total Environ ; 917: 170502, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38301791

RESUMO

The use of lanthanum-modified bentonite (LMB) combined with Vallisneria spiralis (V∙s) (LMB + V∙s) is a common method for controlling internal phosphorus (P) release from sediments. However, the behaviors of iron (Fe) and manganese (Mn) under LMB + V∙s treatments, as well as the associated coupling effect on P, dissolved organic matter (DOM), and heavy metal(loid)s (HMs), require further investigations. Therefore, we used in this study a microelectrode system and high-resolution dialysis technology (HR-Peeper) to study the combined effects of LMB and V∙s on P, DOM, and HMs through a 66-day incubation experiment. The LMB + V∙s treatment increased the sediment DO concentration, promoting in-situ formations of Fe (III)/Mn (IV) oxyhydroxides, which, in turn, adsorbed P, soluble tungsten (W), DOM, and HMs. The increase in the concentrations of HCl-P, amorphous and poorly crystalline (oxyhydr) oxides-bound W, and oxidizable HMs forms demonstrated the capacity of the LMB + V∙s treatment to transform mobile P, W, and other HMs forms into more stable forms. The significant positive correlations between SRP, soluble W, UV254, and soluble Fe (II)/Mn, and the increased concentrations of the oxidizable HMs forms suggested the crucial role of the Fe/Mn redox in controlling the release of SRP, DOM, and HMs from sediments. The LMB + V∙s treatment resulted in SRP, W, and DOM removal rates of 74.49, 78.58, and 54.78 %, which were higher than those observed in the control group (without LMB and V∙s applications). On the other hand, the single and combined uses of LMB and V·s influenced the relative abundances of the sediment microbial communities without exhibiting effects on microbial diversity. This study demonstrated the key role of combined LMB and V∙s applications in controlling the release of P, W, DOM, and HMs in eutrophic lakes.


Assuntos
Hydrocharitaceae , Metais Pesados , Fósforo/química , Matéria Orgânica Dissolvida , Bentonita/química , Lantânio/química , Diálise Renal , Manganês/análise , Lagos/química , Sedimentos Geológicos/química
13.
Environ Res ; 248: 118218, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38266892

RESUMO

The contamination of water with organic pollutants such as dyes and phenols is a serious environmental problem, requiring effective treatment methods. In the present study, a novel nanocomposite was synthesized by intercalating graphene oxide and bentonite clay into MgFeAl-layered triple hydroxide (GO/BENT/LTH), which was characterized using different techniques. The adsorption efficacy of the GO/BENT/LTH nanocomposite was assessed via the removal of two harmful organic water pollutants, namely methyl orange (MO) and 2-nitrophenol (2NP). The obtained results revealed that the maximum adsorption capacities (qmax) of MO and 2NP reached 3106.3 and 2063.5 mg/g, respectively, demonstrating the excellent adsorption performance of the nanocomposite. Furthermore, this study examined the effects of contact time, initial MO and 2NP concentrations, pH, and temperature of the wastewater samples on the adsorptive removal of MO and 2NP by the GO/BENT/LTH nanocomposite. The pH, zeta potential, and FTIR investigations suggested the presence of more than one adsorption mechanism. Thermodynamic investigations elucidated the exothermic nature of the adsorption of MO and 2NP onto the GO/BENT/LTH nanocomposite, with MO adsorption being more sensitive to temperature change. Additionally, regeneration studies revealed a marginal loss in the MO and 2NP removal with the repetitive use of the GO/BENT/LTH nanocomposite, demonstrating its reusability. Overall, the findings of this study reveal the promise of the GO/BENT/LTH nanocomposite for effective water decontamination.


Assuntos
Poluentes Ambientais , Nanocompostos , Poluentes Químicos da Água , Bentonita/química , Adsorção , Poluentes Químicos da Água/análise , Água , Nanocompostos/química , Cinética , Concentração de Íons de Hidrogênio
14.
Sci Total Environ ; 915: 170149, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38242445

RESUMO

Deep Geological Repositories (DGRs) consist of radioactive waste contained in corrosion-resistant canisters, surrounded by compacted bentonite clay, and buried few hundred meters in a stable geological formation. The effects of bentonite microbial communities on the long-term stability of the repository should be assessed. This study explores the impact of harsh conditions (60 °C, highly-compacted bentonite, low water activity), and acetate:lactate:sulfate addition, on the evolution of microbial communities, and their effect on the bentonite mineralogy, and corrosion of copper material under anoxic conditions. No bentonite illitization was observed in the treatments, confirming its mineralogical stability as an effective barrier for future DGR. Anoxic incubation at 60 °C reduced the microbial diversity, with Pseudomonas as the dominant genus. Culture-dependent methods showed survival and viability at 60 °C of moderate-thermophilic aerobic bacterial isolates (e.g., Aeribacillus). Despite the low presence of sulfate-reducing bacteria in the bentonite blocks, we proved their survival at 30 °C but not at 60 °C. Copper disk's surface remained visually unaltered. However, in the acetate:lactate:sulfate-treated samples, sulfide/sulfate signals were detected, along with microbial-related compounds. These findings offer new insights into the impact of high temperatures (60 °C) on the biogeochemical processes at the compacted bentonite/Cu canister interface post-repository closure.


Assuntos
Bentonita , Resíduos Radioativos , Bentonita/química , Resíduos Radioativos/análise , Cobre , Corrosão , Temperatura , Sulfatos , Lactatos , Acetatos
15.
Environ Res ; 247: 118193, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38220086

RESUMO

In the presented study, a novel polypyrrole-decorated bentonite magnetic nanocomposite (MBnPPy) was synthesized for efficient removal of both anionic methyl orange (MO) and cationic crystal violet (CV) dyes from contaminated water. The synthesis of this novel adsorbent involved a two-step process: the magnetization of bentonite followed by its modification through in-situ chemical polymerization. The adsorbent was characterized by SEM/EDX, TEM/SAED, BET, TGA/DTA-DTG, FTIR, VSM, and XRD studies. The investigation of the adsorption properties of MBnPPy was focused on optimizing various parameters, such as dye concentration, medium pH, dosage, contact time, and temperature. The optimal conditions were established as follows: dye concentration of Co (CV/MO) at 100 mg/L, MBnPPy dosage at 2.0 g/L, equilibrium time set at 105 min for MO and 120 min for CV, medium pH adjusted to 5.0 for MO dye and 8.0 for CV dye, and a constant temperature of 303.15 K. The different kinetic and isotherm models were applied to fit the experimental results, and it was observed that the Pseudo-2nd-order kinetics and Langmuir adsorption isotherm were the best-fitted models. The maximal monolayer adsorption capacities of the adsorbent were found to be 78.74 mg/g and 98.04 mg/g (at 303.15 K) for CV and MO, respectively. The adsorption process for both dyes was exothermic and spontaneous. Furthermore, a reasonably good regeneration ability of MBnPPy (>83.45%/82.65% for CV/MO) was noted for up to 5 adsorption-desorption cycles with little degradation. The advantages of facile synthesis, cost-effectiveness, non-toxicity, strong adsorption capabilities for both anionic and cationic dyes, and easy separability with an external magnetic field make MBnPPy novel.


Assuntos
Compostos Azo , Nanocompostos , Poluentes Químicos da Água , Corantes/química , Adsorção , Polímeros , Violeta Genciana/química , Bentonita/química , Pirróis , Água/química , Fenômenos Magnéticos , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Cinética
16.
Curr Drug Deliv ; 21(5): 645-661, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37038294

RESUMO

Clay materials are widely used in drug delivery systems due to their unique characteristics. Montmorillonite is a major component of bentonite and it has a large surface area, better swelling capacity, and high adsorption capacity. The modification of natural bentonite could improve its sorption ability for new emerging applications. Recent advancements in the polymer-silicate composite have novel biomedical applications in drug delivery, tissue regeneration, wound healing, cancer therapy, enzyme immobilization, diagnostic and therapeutic devices, etc. Perspective view of the montmorillonite- polymer composite as a pharmaceutical carrier in drug delivery systems has been discussed in this review. Different types of modification of montmorillonite for the development of pharmaceutical formulations have also been documented. Many challenges in clay nanocomposite systems of polymer of natural/synthetic origin are yet to be explored in improving antimicrobial properties, mechanical strength, stimuli responsiveness, resistance to hydrolysis, etc. Drug interaction and binding capability, swelling of clay may be carried out for finding possible applications in monitoring delivery systems. Pharmaceutical properties of active drugs in the formulation could also be improved along with dissolution rate, solubility, and adsorption. The clay-incorporated polymeric drug delivery systems may be examined for a possible increase in swelling capacity and residence time after mucosal administration.


Assuntos
Bentonita , Polímeros , Argila , Bentonita/química , Sistemas de Liberação de Medicamentos , Preparações Farmacêuticas
17.
Chemosphere ; 349: 140850, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043615

RESUMO

Interactions between silicate bacteria and silicates are very common in nature and hold great potential in altering their mutual physicochemical properties. But their interactions in regulating contaminants remediation involving performance and mechanisms are often overlooked. Here, we focused on the interactions between silicate bacteria (Paenibacillus polymyxa, PP; Bacillus circulans, BC) and a soil silicate montmorillonite (Mt), and their impact on Cd(II) immobilization. The obtained results showed that Mt greatly promoted the growth of the bacteria, resulting in a maximum 10.31 times increase in biomass production. In return, the bacteria strongly enhanced the Cd(II) adsorption on Mt, with adsorption capacities increased by 80.61%-104.45% in comparison to the raw Mt. Additionally, the bacteria-Mt interaction changed Cd(II) to a more stabilized state with a maximum reduction of 38.90%/g Mt in bioavailability. The enhancement of Cd(II) adsorption and immobilization on the bacterial modified Mt was caused by the following aspects: (1) the bacteria activities altered the aggregation state of Mt and made it better dispersed, thus more active sites were exposed; (2) the microbial activities brought about more rough and crumpled surface, as well as smaller Mt fragments; (3) a variety of microbial-derived functional groups were introduced onto the Mt surface, increasing its affinity for heavy metals; (4) the main Cd(II) immobilization mechanism was changed from ion exchange to the combination of ion exchange and functional groups induced adsorption. This work elucidates the potential ecological and evolutionary processes of silicate bacteria-soil clay mineral interactions, and bears direct implications for the clay-mediated bioremediation of heavy metals in natural environments.


Assuntos
Metais Pesados , Poluentes do Solo , Bentonita/química , Cádmio/química , Argila , Solo/química , Bactérias , Poluentes do Solo/análise , Adsorção
18.
Environ Sci Pollut Res Int ; 31(2): 2419-2436, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38063959

RESUMO

The use of phyllite (Phy) instead of quartz in mixtures with bentonite (B) is recommended as a buffer material for engineering barriers in a geological repository of nuclear waste. The recommendation is based on experimentally determined sorption properties of various Phy/B mixtures. The adsorption capacity of Phy/B mixtures (Phy/B: 75/25, 50/50, and 25/75), the removal efficacy of Eu(III) ions (an analog for fissiongenic lanthanides and actinides), and the rate of their binding reaction were studied using the batch adsorption equilibrium and kinetic experiments at different Eu(III) initial concentrations, solution pH, and solution to adsorbent (L/S) ratio. The adsorption capacity of the Phy/B mixtures increased with the increased bentonite content in the mixture depending on the L/S ratio and solution pH. The highest increase in the adsorption capacity of the Phy/B mixtures compared to phyllite was observed for the Phy/B proportions of 25/75 and 50/50. The rate of the Eu(III) adsorption was the best fitted by the pseudo-second-order kinetic model indicating that the adsorption rate was controlled by chemisorption. The Sips model provided the best correlation of the adsorption experimental data, indicative of more than one adsorption site. The results of this study show the advantage of the Phy/B mixtures in immobilizing Eu and certain fission products by combining adsorption properties of the materials.


Assuntos
Resíduos Radioativos , Poluentes Químicos da Água , Bentonita/química , Adsorção , Quartzo , Concentração de Íons de Hidrogênio , Cinética , Poluentes Químicos da Água/análise
19.
Chemosphere ; 349: 140861, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056713

RESUMO

Adsorption is one of the most promising wastewater treatment methods due to its simplicity and efficacy at ambient temperature and pressure. However, the technical and economic feasibility of this process largely depends on the performance of the utilized adsorbents. In this study, a promising adsorbent made of polyethyleneimine, graphene oxide (GO), bentonite, and MgFeAl-layered triple hydroxide (MgFeAl-LTH) has been synthesized and characterized. The results revealed that the synthesized nanocomposite (abbreviated as PGB-LTH) possesses good porosity and crystallinity. The adsorption performance of the PGB-LTH nanocomposite towards two harmful water pollutants (i.e., methyl orange (MO) and crystal violet (CV)) was investigated, and the results revealed that the nanocomposite outperforms its parental materials (i.e., GO, bentonite, and MgFeAl-LTH). The maximum adsorption capacity (qmax) of MO and CV onto the nanocomposite could reach 1666.7 and 1250.0 mg/g, respectively, as predicted using the Langmuir adsorption isotherm. Additionally, the PGB-LTH nanocomposite is highly reusable with an insignificant decline in performance upon repetitive use. In terms of thermodynamics, MO adsorption onto the nanocomposite is exothermic while CV adsorption is endothermic despite that both dyes adsorb spontaneously as revealed by the negative values of the Gibbs free energy change at all the examined temperatures. The generated adsorption data were utilized for constructing and assessing ensemble meta-machine learning techniques aimed at cost-effective simulation and prediction of the proposed adsorption method. Bagging and boosting methods were developed and evaluated intensively using the obtained adsorption data. The Extra Trees model achieved promising results as evidenced by the high correlation coefficient of 99% as well as low computed RMSE and MAE errors of 11.42 and 5.11, respectively, during the testing phase. These results demonstrate the model strong capability to effectively simulate and predict the adsorption process in question.


Assuntos
Grafite , Nanocompostos , Poluentes Químicos da Água , Corantes/química , Argila , Adsorção , Grafite/química , Bentonita/química , Água/química , Cátions , Aprendizado de Máquina , Nanocompostos/química , Poluentes Químicos da Água/análise , Cinética , Concentração de Íons de Hidrogênio
20.
Environ Res ; 241: 117544, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37944689

RESUMO

This study addresses the urgent need for practical solutions to industrial water contamination. Utilizing Algerian Bentonite as an adsorbent due to its regional prevalence, we focused on the efficiency of the Bentonite/Sodium dodecylbenzene sulfonate (SDBS) matrix in Methylene Blue (MB) removal. The zero-charge point and IR spectroscopy characterized the adsorbent. Acidic pH facilitated SDBS adsorption on Bentonite, achieving equilibrium in 30 min with a pseudo-second-order model. The UPAC and Freundlich model indicated a qmax of 25.97 mg/g. SDBS adsorption was exothermic at elevated temperatures. The loaded Bentonite exhibited excellent MB adsorption (pH 3-9) with PSOM kinetics. Maximum adsorption capacity using IUPAC and GILES-recommended isotherms was qmax = 23.54 mg/g. The loaded Bentonite's specific surface area was 70.01 m2/g, and the Sips model correlated well with experimental data (R2 = 0.98). This study highlights adsorption, mainly Bentonite/SDBS matrices, as a promising approach for remediating polluted areas by efficiently capturing and removing surfactants and dyes, contributing valuable insights to address industrial water contamination challenges.


Assuntos
Bentonita , Poluentes Químicos da Água , Bentonita/química , Azul de Metileno , Águas Residuárias , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Adsorção , Cinética , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...